Recent posts

#1
Tau Language / Multiplying 8bit numbers using...
Last post by pk - Mar 30, 2025, 08:31 AM
Please see below how we can use the Tau interpreter to multiply two 8bit numbers. Of course it can be easily extended to handle more bits, the important thing to remember is to keep the input file, called here "mask.in", filled with 0s (zeros) - to be exact double the amount of the input numbers' bits. So for this 8bits demo there should be 16 rows of 0s in "mask.in" file.

# a = 213 (11010101)
a8() := 1 # MSB
a7() := 1
a6() := 0
a5() := 1
a4() := 0
a3() := 1
a2() := 0
a1() := 1 # LSB
# b = 170 (10101010)
b8() := 1 # MSB
b7() := 0
b6() := 1
b5() := 0
b4() := 1
b3() := 0
b2() := 1
b1() := 0 # LSB

r_adder() := o2[0]=i1[0]+i2[0] && o2[t]=o1[t]+i1[t]+i2[t] && o1[t]=(i1[t-1]|i2[t-1])o1[t-1] | i1[t-1]i2[t-1]
init(x8,x7,x6,x5,x4,x3,x2,x1) := o0[0]=x1 && o0[1]=x2 && o0[2]=x3 && o0[3]=x4 && o0[4]=x5 && o0[5]=x6 && o0[6]=x7 && o0[7]=x8 && o1[t]=i0[t]

sbf i0=ifile("mask.in") # For multiplying 8bit numbers the mask file should have 16 zeros.
sbf o0=ofile("n1.in")
sbf o1=ofile("tmp0.out")
r init(a8(),a7(),a6(),a5(),a4(),a3(),a2(),a1())
sbf o0=ofile("n2.in")
r init(b8(),b7(),b6(),b5(),b4(),b3(),b2(),b1())

part1(x) := (x=1) ? (o1[t]=i1[t]) : (o1[t]=i0[t])
part2(x) := (x=1) ? (o1[t]=i1[t-1]) : (o1[t]=i0[t-1])
part3(x) := (x=1) ? (o1[t]=i1[t-2]) : (o1[t]=i0[t-2])
part4(x) := (x=1) ? (o1[t]=i1[t-3]) : (o1[t]=i0[t-3])
part5(x) := (x=1) ? (o1[t]=i1[t-4]) : (o1[t]=i0[t-4])
part6(x) := (x=1) ? (o1[t]=i1[t-5]) : (o1[t]=i0[t-5])
part7(x) := (x=1) ? (o1[t]=i1[t-6]) : (o1[t]=i0[t-6])
part8(x) := (x=1) ? (o1[t]=i1[t-7]) : (o1[t]=i0[t-7])

sbf i1=ifile("n1.in")
sbf i2=ifile("n2.in")
sbf o1=ofile("part1.out")
r part1(b1())
sbf o1=ofile("part2.out")
r part2(b2())
sbf o1=ofile("part3.out")
r part3(b3())
sbf o1=ofile("part4.out")
r part4(b4())
sbf o1=ofile("part5.out")
r part5(b5())
sbf o1=ofile("part6.out")
r part6(b6())
sbf o1=ofile("part7.out")
r part7(b7())
sbf o1=ofile("part8.out")
r part8(b8())

sbf o1=ofile("carry.out")

sbf i1=ifile("part1.out")
sbf i2=ifile("part2.out")
sbf o2=ofile("tmp1.out")
r r_adder()
sbf i1=ifile("tmp1.out")
sbf i2=ifile("part3.out")
sbf o2=ofile("tmp2.out")
r r_adder()
sbf i1=ifile("tmp2.out")
sbf i2=ifile("part4.out")
sbf o2=ofile("tmp3.out")
r r_adder()
sbf i1=ifile("tmp3.out")
sbf i2=ifile("part5.out")
sbf o2=ofile("tmp4.out")
r r_adder()
sbf i1=ifile("tmp4.out")
sbf i2=ifile("part6.out")
sbf o2=ofile("tmp5.out")
r r_adder()
sbf i1=ifile("tmp5.out")
sbf i2=ifile("part7.out")
sbf o2=ofile("tmp6.out")
r r_adder()
sbf i1=ifile("tmp6.out")
sbf i2=ifile("part8.out")
sbf o2=ofile("added.out")
r r_adder()

#2
Educational Resources / Re: How to start Tau Language ...
Last post by S1r_4zdr3w - Mar 27, 2025, 12:10 PM
Thanks for l0g1x who gave me the idea how to work this out.


sudo apt-get update
sudo apt-get install libz3-dev

in this way we can install the z3.

Thanks l0g1x.
#3
Educational Resources / Re: How to start Tau Language ...
Last post by S1r_4zdr3w - Mar 27, 2025, 11:59 AM
Hi guys, after for some weeks day off, I try to play again with the Tau REPL. I need to update it but some problem emerge. Now I delete the whole Tau folder. Then download again from the github website.

Now, I repeat the process I know on how to start by

1.) git clone https://github.com/IDNI/tau-lang.git
2.) cd tau-lang
3.) ./release.sh

but after, some error emerge, something to do with Z3-NOTFOUND



any idea how to get over this problem?
#4
Tau Language / Re: Prime numbers demo
Last post by pk - Jan 25, 2025, 11:08 AM
Please see below a significantly quicker version due to the arithmetic update (addition is now performed on bits) and introduction of leq function:

overflow(0) := 0
succb(u[15]()) := overflow(1)
succb(overflow(1)) := overflow(1)
succb(bin(b,c,d,e)) := bin(b+(cde),c+(de),d+e,e')
u[0]() := bin(0,0,0,0)
u[t]() := succb(u[t-1]())
addb(x|overflow(1),y) := overflow(1)
addb(overflow(1),x) := overflow(1)
addb(bin(b,c,d,e),bin(n,o,p,q)) := bin(b+n+(co|(d|p)(c|o)eq|(c|o)dp),c+o+(dp|(d|p)eq),d+p+(eq),e+q) | overflow(1) & (bn|(c|o)(d|p)(b|n)eq|(b|n)(c|o)dp|(b|n)co)
predb(bin(b,c,d,e)) := bin(b+(c|d|e)',c+(d|e)',d+e',e')
mulb(bin(0,0,0,0),x) := bin(0,0,0,0)
mulb(x,bin(0,0,0,0)) := bin(0,0,0,0)
mulb(overflow(1),x) := overflow(1)
mulb(x,overflow(1)) := overflow(1)
mulb(bin(b,c,d,e),bin(n,o,p,q)) := addb(mulb(predb(bin(b,c,d,e)),bin(n,o,p,q)),bin(n,o,p,q))
cmp(x,overflow(1)) := 0
cmp(bin(b,c,d,e),bin(b,c,d,e)) := 1
cmp(bin(b,c,d,e),bin(n,o,p,q)) := 0
leq(x,overflow(1)) := 0
leq(overflow(1),x) := 0
leq(y|overflow(1),x) := 0
leq(bin(b,c,d,e),bin(n,o,p,q)) := (n'b|(o'c)(nb|n'b')|(p'd)(oc|o'c')(nb|n'b')|(q'e)(pd|p'd')(oc|o'c')(nb|n'b'))'
oksq(x,q) := succb(x) & leq(mulb(succb(x),succb(x)),q)
okmul(x,y,q) := succb(y) & leq(mulb(x,succb(y)),q)
notpr1(q,0) := 0
notpr1(q,bin(b,c,d,e)) := notpr2(q,bin(b,c,d,e),bin(b,c,d,e)) | notpr1(q,oksq(bin(b,c,d,e),q))
notpr2(q,x,0) := 0
notpr2(q,x,bin(b,c,d,e)) := cmp(q,mulb(x,bin(b,c,d,e))) | notpr2(q,x,okmul(x,bin(b,c,d,e),q))
fndprm(x,prm[1]()) := 0
fndprm(x,prm[t]()) := (notpr1(x,u[2]()))'&prm[t]() | fndprm(predb(x),prm[t-1]())
primes(max[t]()) := fndprm(u[t](),prm[t]())

n primes(max[15]())
#5
Tau Language / Prime numbers demo
Last post by pk - Jan 17, 2025, 07:10 PM
I implemented a simple prime numbers sieve within a 4 bits arithmetic in Tau. Feel free to post any improvements or modifications here.
And now for the code, it has two sections - I called them modules.
First is the implementation of the arithmetic with binary addition and multiplication, followed by the prime numbers generator section. See below:

#### 4-bit arithmetic module ####
succb(u[15]()) := overflow(1)
succb(overflow(1)) := overflow(1)
succb(bin(b,c,d,e)) := bin(b+(cde),c+(de),d+e,e')
overflow(0) := 0
ovf0(overflow(1)) := 0
ovf0(bin(b,c,d,e)) := 1
cmp(x,overflow(1)) := 0
cmp(bin(b,c,d,e),bin(b,c,d,e)) := 1
cmp(bin(b,c,d,e),bin(n,o,p,q)) := 0
u[0]() := bin(0,0,0,0)
u[t]() := succb(u[t-1]())
addb(overflow(1),x) := overflow(1)
predb(bin(b,c,d,e)) := bin(b+(c|d|e)',c+(d|e)',d+e',e')
addb(bin(0,0,0,0),x) := x
addb(x,bin(0,0,0,0)) := x
addb(bin(b,c,d,e),bin(1,1,1,1)) := overflow(1)
addb(bin(b,c,d,e),bin(n,o,p,q)) := addb(predb(bin(b,c,d,e)),succb(bin(n,o,p,q)))
mulb(bin(0,0,0,0),x) := bin(0,0,0,0)
mulb(x,bin(0,0,0,0)) := bin(0,0,0,0)
mulb(bin(b,c,d,e),bin(n,o,p,q)) := addb(mulb(predb(bin(b,c,d,e)),bin(n,o,p,q)),bin(n,o,p,q))
#### ENDof 4-bit arithmetic module ####


#### prime numbers module ####
oksq(x) := succb(x) & ovf0(mulb(succb(x),succb(x)))
okmul(x,y) := succb(y) & ovf0(mulb(x,succb(y)))
notpr1(u,0) := 0
notpr1(u,bin(b,c,d,e)) := notpr2(u,bin(b,c,d,e),bin(b,c,d,e)) | notpr1(u,oksq(bin(b,c,d,e)))
notpr2(u,x,0) := 0
notpr2(u,x,bin(b,c,d,e)) := cmp(u,mulb(x,bin(b,c,d,e))) | notpr2(u,x,okmul(x,bin(b,c,d,e)))
fndprm(x,prm[1]()) := 0
fndprm(x,prm[t]()) := (notpr1(x,u[2]()))'&prm[t]() | fndprm(predb(x),prm[t-1]())
primes(max[t]()) := fndprm(u[t](),prm[t]())
#### ENDof prime numbers module ####

#### prime numbers demo ####

n primes(max[15]())

#6
Tau Language / Re: Tau Language demos
Last post by pk - Jan 01, 2025, 10:14 PM
I added gt and lt functions to my previous demo (note that a predecessor relation is also required for these, added as well - it's called "pred" here).

cmp(int[x](1),int[x](1)):=T
cmp(int[x](1),int[y](1)):=F
pred(int[t](1)):=int[t-1](1)
gt(int[0](1),int[x](1)):=F
gt(int[x](1),int[x](1)):=F
gt(x,y):=cmp(pred(x),y) || gt(pred(x),y)
lt(int[x](1),int[x](1)):=F
lt(int[x](1),int[y](1)):=gt(int[y](1),int[x](1))

So now we can also check whether a shape has more/less sides than the other:

sides(sqr()):=int[4](1)
sides(tri()):=int[3](1)
sides(rect()):=int[4](1)
greater(x,y):=gt(sides(x),sides(y))
less(x,y):=lt(sides(x),sides(y))

n greater(tri(),sqr())
n greater(sqr(),tri())
n greater(tri(),tri())
n greater(sqr(),sqr())
n greater(tri(),rect())
n greater(rect(),tri())
n greater(rect(),sqr())

n less(tri(),sqr())
n less(sqr(),tri())
n less(tri(),tri())
n less(sqr(),sqr())
n less(tri(),rect())
n less(rect(),tri())
n less(rect(),sqr())
#7
Tau Language / Re: Tau Language demos
Last post by pk - Jan 01, 2025, 08:21 AM
Thanks to S1r_4zdr3w for pointing out an unhandled edge case in the multiplication recurrence relation (while multiplying by zero). Please see the fixed code below.

# This is an example implementation of addition and multiplication arithmetic in Tau (defined here between 0 and 20).
# Range can be easily extended by adding more entries to the input successor relation.
version

# input

succ(int[0](1)) := int[1](1)
succ(int[1](1)) := int[2](1)
succ(int[2](1)) := int[3](1)
succ(int[3](1)) := int[4](1)
succ(int[4](1)) := int[5](1)
succ(int[5](1)) := int[6](1)
succ(int[6](1)) := int[7](1)
succ(int[7](1)) := int[8](1)
succ(int[8](1)) := int[9](1)
succ(int[9](1)) := int[10](1)
succ(int[10](1)) := int[11](1)
succ(int[11](1)) := int[12](1)
succ(int[12](1)) := int[13](1)
succ(int[13](1)) := int[14](1)
succ(int[14](1)) := int[15](1)
succ(int[15](1)) := int[16](1)
succ(int[16](1)) := int[17](1)
succ(int[17](1)) := int[18](1)
succ(int[18](1)) := int[19](1)
succ(int[19](1)) := int[20](1)
pred(int[t](1)) := int[t-1](1)
add(x, int[0](1)) := x
add(int[0](1), x) := x
add(x, y) := add(pred(x), succ(y))
mul(x, int[0](1)) := int[0](1)
mul(int[0](1), x) := int[0](1)
mul(x, int[1](1)) := x
mul(int[1](1), x) := x
mul(x, y) := add(y, mul(pred(x), y))

# addition and multiplication examples

n add(int[7](1),int[10](1))

n mul(int[5](1),int[3](1))

# overflow examples

n add(int[22](1),int[3](1))

n mul(int[3](1),int[8](1))


# done
quit
#8
Tau Language / Re: Tau Language demos
Last post by pk - Dec 29, 2024, 11:28 AM
One more example:

cmp(int[x](1),int[x](1)):=T
cmp(int[x](1),int[y](1)):=F
sides(sqr()):=int[4](1)
sides(tri()):=int[3](1)
sides(rect()):=int[4](1)
same(x,y):=cmp(sides(x),sides(y))
n same(tri(),sqr())
n same(sqr(),tri())
n same(tri(),tri())
n same(sqr(),sqr())

n same(tri(),rect())
n same(rect(),sqr())

quit
 

#9
Tau Language / Tau Language demos
Last post by pk - Dec 26, 2024, 06:47 PM
Please feel free to add your Tau demos to this post.
I'll start with a simple implementation of integer arithmetic with addition and multiplication.
I'm attaching the .tau demo file and screenshots of its output.

https://pastebin.com/raw/vYW7dEwt


#10
Governance and Consensus Mechanisms / AI REVOLUTION
Last post by Captainfeci - Dec 21, 2024, 02:51 PM
Tau Net is a user-driven layer 1 logical AI blockchain, evolving alongside the collective intelligence of all of its users.

Ready to join this adventurous journey with Tau to revolutionize the AI world.